
Data-Dependent Multipass Control Flow on GPUs
Tiberiu Popa ? Michael McCool

Computer Graphics Lab, School of Computer Science, University of Waterloo

The computations performed by GPUs are suitable for a
streaming computational model [3], and GPU architec-
tures are similar to those of stream processors. However,
SIMD GPUs do not efficiently implement data-dependent
control flow.

We are attempting to build an efficient, portable, and
transparent multipass programming framework that sup-
ports the entire palette of data-dependent control con-
structs. For our prototype we restricted our work to GPU
fragment units. Streams are stored in textures for read-
ing operations and target frame buffers for writing oper-
ations. However, on current GPUs fragments are written
to an array, not sequentially to a stream. In particular, null
records (killed fragments) resulting from conditional out-
puts are not removed from the output stream resulting in
wasted bandwidth and computation on later passes. Ka-
pasi et al [1] use special hardware to pack the stream into
a compact representation with no null records. The com-
pacted stream can then be processed in later passes with
maximum efficiency. We are attempting to apply this ap-
proach to GPUs.

SCHEDULER

The control flow of a program can be schematically rep-
resented as a directed graph where the nodes have only
linear control flow and the arcs represent data dependent
branches. In a multipass streaming computation frame-
work, the control graph can be interpreted as a streaming
graph. Nodes are independent kernels and arcs are data
paths from one kernel to the next. For example, the fol-
lowing figure shows the streaming graph of a Julia set test
program. This streaming graph consists of three kernels,
representing initialization code, the body of the loop and
the evaluation of the final colour. Its data flow graph is
illustrated in the following figure. We execute the stream-
ing graph in multiple passes, packing data into different
buffers to eliminate garbage computations. In each pass,
a kernel will be selected by the scheduler based on heuris-
tics to maximize throughput.

A

C

B

Our system takes a general purpose program written in
Sh [2], and transforms its control graph into a stream-
ing graph suitable for multi-pass processing. A run-time
scheduler then searches for a suitable sequence in which
to run the kernels. The following figure demonstrates the
execution of a streaming graph.

� �� �
� �� �

� �� �

� �� �� �
� �� �� �

� � �� � �

� � �� � �
	 	 		 	 	

� � �

� � �� � �

� �
� �
� �
� �

� �� �
� �� �

� �� �

� �� �
� �� �

� � �� �

A

C

B

Pass 1

A

C

B

Pass 5

A

C

A

C

A

C

A

C

A

C

B

Pass 2

Pass 3

Pass 4

Pass 6

B

B

B B

Branches are handled using conditional assignment and
multiple output buffers. As a result, output streams are
split into multiple sparse streams. To avoid resource
idling, we explicitly perform a packing operation on
sparse arrays to convert them to dense arrays.

PACKING

X

Packing is the spatial compaction of stream data. Unpack-
ing is the opposite operation that merges two previously
packed streams into one stream. The above figure shows
how a sparse stream is packed and can later be unpacked
using an inverse map stored in a texture. The left image
shows a sparse stream, the right image shows the packed
stream and the middle image shows the inverse map used
to restore the order of the stream.

JULIA SET EXAMPLE

The potential improvement in performance on the Julia
set test case is given in the following table:

Maximum Improvement Improvement
iterations incl. overhead w/o overhead
5 22% 35%
10 26% 40%
20 28% 41%

Julia set evaluation stresses iteration scheduling due to
its high iteration count variance. The performance gain
for computing the Julia set using packing over not pack-
ing is illustrated in the above table. The resolution was
512×512. The second column shows the overall gain in
performance (including scheduling and kernel-switching
overhead) and the third column shows the gain in frag-
ment program execution efficiency alone.

These numbers do not take into consideration the cost of
packing. Unfortunately, packing on current GPUs is rela-
tively expensive. However, it would be possible to add
hardware support to GPUs to support free packing on
write, or low-cost packing during blit operations.

ShAttrib1f iterations = 5.0; / / number of iterations
ShAttrib1f color_scale_factor = 1.0 / (iterations+1.0);
ShAttrib3f c(-0.122, 0.745, 0.0); / / julia set constant

ShProgram ifp = SH_BEGIN_PROGRAM("gpu:stream") {
ShInputColor3f input; / / (x, y) position of a point

/ / in the interval [-2, 2]
ShOutputColor3f output; / / color

ShAttrib3f pos = input; / / stores the positions
ShAttrib3f i(0, 0, 0); / / iterator variable

/ / first iteration
ShAttrib3f temp = pos;
pos(0) = temp(0) * temp(0) - temp(1) * temp(1) + c(0);
pos(1) = 2.0 * temp(0) * temp(1) + c(1);

/ / stopping conditions
SH_WHILE((i(0)<iterations) *

(pos(0) * pos(0) + pos(1) * pos(1) <= 4.0f)) {
/ / iterate
ShAttrib3f temp = pos;
pos(0) = temp(0) * temp(0) - temp(1) * temp(1) + c(0);
pos(1) = 2.0 * temp(0) * temp(1) + c(1);

i(0) = i(0) + 1;
} SH_ENDWHILE;

/ / final colour
output = pos;

} SH_END;

CONCLUSION

We have presented a method to implement asymptoti-
cally efficient data-dependent control flow on SIMD GPUs
using conditional stream output and packing. A run-time
scheduling algorithm determines the order in which ker-
nels run. Sparse stream elements are packed into contigu-
ous blocks to avoid redundant computations.

On current GPUs, the overhead associated with packing
is large, so hardware support would be required to make
this approach practical. However, similar alternative ap-
proaches to avoid computation are possible; for instance,
by exploiting vertex buffer feedback, the occlusion test,
and early depth testing.

References

[1] Ujval J. Kapasi, William J. Dally, Scott Rixner, Peter R.
Mattson, John D. Owens, and Brucek Khailany. Effi-
cient conditional operations for data-parallel architec-
tures. In Symp. Microarchitecture, pages 159–170. ACM
Press, 2000.

[2] Michael McCool and Stefanus Du Toit. Metaprogram-
ming GPUs with Sh. AK Peters Ltd., 2004.

[3] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott
Rixner, Peter Mattson, and Ben Mowery. Polygon Ren-
dering on a Stream Architecture. Proc. Graphics Hard-
ware, pages 23–32, 2000.

